By: Nancy Lin

Advanced therapies are poised to change the face of medicine, promising to cure diseases that have long resisted us. But there are many challenges to overcome before we can make full use of these life-saving therapies, including detecting microbial contamination quickly. We sat down with Nancy Lin, leader of the Biomaterials Group at the National Institute of Standards and Technology (NIST), to learn more about the NIST Rapid Microbial Testing Methods Consortium that she and her colleagues are starting to address this problem. They are hosting an open workshop to launch the consortium on September 17, 2020, where they will discuss measurement challenges related to rapid microbial testing and potential solutions the consortium can provide.

What is an advanced therapy, and how does it differ from traditional medicine?
The term “advanced therapy” typically refers to biologically based, next-generation therapies to treat disease. These can include   more...
A humpback whale breaching.
Credit: Sally Mizroch/NOAA

It’s not easy to do pregnancy tests on whales. You can’t just ask a wild ocean animal that’s the size of a school bus to pee on a little stick. For decades, the only way scientists could count pregnant females was by sight and best guesses based on visual characteristics. For the last several years, researchers have relied on hormone tests of blubber collected via darts, but the results were often inconclusive (not negative or positive), and researchers couldn’t confidently say if the animal was pregnant or just ovulating.

Research from the National Institute of Standards and Technology (NIST) and Australia’s Griffith University points to a weakness of that testing and provides a new method for hormone testing that offers better results.

New mechanophore senses damage to fiber reinforced polymers.

A team at the National Institute of Standards and Technology (NIST) has developed a tool to monitor changes in widely used composite materials known as fiber reinforced polymers (FRPs), which can be found in everything from aerospace and infrastructure to wind turbines. The new tool, integrated into these materials, can help measure the damage that occurs as they age.

by Steve Yozwiak

Oncologists, radiologists and surgeons all could benefit, according to a TGen-led study of brain tumors

PHOENIX, Arizona — Melding the genetic and cellular analysis of tumors with how they appear in medical images could give physicians and other cancer therapy specialists new insights into how to best treat patients, especially those with brain cancer, according to a new study led by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope.

Published in the scientific journal PLOS ONE, this study suggests that the tumor microenvironment — essentially all the cells both in and surrounding a tumor — play a vastly under-studied role in the development and growth of cancer.

by Zach Sweger

HERSHEY, Pa. — Researchers from Penn State College of Medicine identified a new gene mutation that may cause a type of familial thyroid cancer. Dr. Darrin Bann, an otolaryngology resident at the College of Medicine and lead author of the study, said that this mutation is the first and only mutation associated with familial thyroid cancer to be identified in a gene that is primarily expressed in the thyroid gland.

According to the researchers, people who have a first-degree relative with thyroid cancer have a two to five-fold increase of developing the disease themselves. Identifying this mutation has helped the researchers understand why this form of cancer is more inheritable than other cancers. They published the study results in Cancer Research.

By: Sheng Ran

Nature often reveals itself in surprising ways, so scientists, who study nature, have a lot of opportunities to be surprised. Over the past year and a half, I have been working on UTe2, a simple compound made of two parts, uranium and tellurium, which I discovered is a superconductor. That is, it conducts electricity without resistance under certain conditions.

Superconductivity is exciting because it’s almost like a superpower: It can help scientists detect very weak brain activity, accelerate particles to nearly the speed of light, and potentially provide the building blocks for futuristic quantum computers that could solve complex problems our current computers can’t touch.